A Practical, Targeted, and Stealthy attack against WPA-Enterprise WiFi

A. Cassola W. Robertson E. Kirda G. Noubir

College of Computer and Information Science, Northeastern University

NDSS 2013

Table of Contents

WiFi Today

Prototype

Evaluation

Questions

Introduction

WiFi is important:

- Main access method to the Internet
- ▶ Millions of people use it at home
- Organizations provide it for employee network access

Threats:

- Eavesdropping, tampering
- ► Rogue Access Points (Evil Twins)
- Jamming

Eavesdropping

- ▶ WEP (RC4 static key 1999) first broken 2001 allowing key recovery
- WPA TKIP (RC4 dynamic keying, 2002) temporary keystream recovery in 2008
- ▶ WPA CCMP (AES dynamic key, 2002) as secure as AES
- PSK: HMAC-SHA1 based functions

$$K = PBKDF2(SSID||PSK, 4096, 256)$$

$$K_t = PRF-512(K, MAC_{AP}, MAC_C, N_{AP}, N_C)$$

► Enterprise: Master key derived from protocol interaction: typically client TLS or MSCHAPv2 over TLS (PEAPv0)

Rogues and Jamming

Rogue APs trick users into connecting, but

- Competition for client attention, limiting range
- ► Techniques like WiFi Protected Setup: physical interaction
- RADIUS servers use signed certificates

Jamming can disrupt communication

- ▶ 802.11 NIC firmware protected by vendors
- ▶ Improvements in Physical Layer limit range

Is WiFi Ok?

No, it is not

- We can get your password in hours to days
- It will look like an everyday glitch
- Only you will be the target
- ► Inexpensive (\$4,500 or less)

We will show:

- Current isolated protections are not enough
- Flaws across the stack can be exploited together for maximum effect
- ▶ WiFi security needs a more solid foundation to build upon

Rogue AP

- Pose as legitimate member AP of network
- Client connects
- Client accepts certificate
- ► Listen to and breaks MSCHAPv2

However:

- Client selects "best" AP according to some measure, e.g. received power
- RADIUS servers identify themselves with TLS certificates
- Clients record FQDN of RADIUS server first time
- RADIUS certificate by other names will be refused

Forcing a new profile

System is open during new network setup:

- SSID is linked to RADIUS
- ▶ Using a different SSID forces a new network entry in client
- ▶ OS GUIs do not display SSID non-printable characters
- ▶ Use SSID + control-char

However:

- ► Repeated entries in table
- What to do? Jam legitimate network

Jamming

What the jammer must do:

- Decode 802.11 frames from clients
- When client scans for networks, jam probes before they reach other devices

How fast?

- ightharpoonup WPA-Enterprise Probe Requests typically ~ 1 Kbit long
- ► Clients probe at lowest rate for discovery: 1Mbps
- ▶ Up to 1ms trasmission time

Jamming benefits (cont.)

Power benefits:

- ▶ A naïve Rogue AP must outpower legitimate ones
- ▶ We only need to or mangle packets or trigger the NIC's Energy Detector (-80 to -70 dBm from standard doc vs outpowering -30 dBm from afar)
- ▶ High gain antennae can increase range even more

Stealth benfits:

- ▶ A 802.11-aware jammer can act on specific frame fields
- Can target individual MAC addresses, invisible to others
- ▶ Source MAC address at byte 10 means $80\mu s$ delay to jam at 1Mbps

Jamming (cont.)

Jammer pseudocode:

```
function jammer(VMAC, SSID):
  //precompute response train
  packet = build_frame(PROBE_RESP, SSID, VMAC, local_MAC)
  response sig = 80211_modulate([packet, packet, ...])
  loop:
   if frame match(VMAC) == MATCH:
     switchTx(on)
     Tx(response_sig)
     switchTx(off)
function frame match(MAC):
  loop: //move to src address field in responses
   if frame_type(80211_demodulate(radio_in)) == PROBE_RESP:
    plcp_toByte(SRC_ADDR)
    break
  for i = 1...addrlen: //record address
    addr[i] = plcp_nextByte()
  if addr == MAC:
    return MATCH
  else:
    return NO MATCH
```

Certificates

Setup requires human intervention to accept certificate:

- Build an inconspicuous self-signed cert., emulating behavior of vendors
- 2. Show legitimate RADIUS cert. n-1 times, then our own
 - First attempts will be inspected and accepted, but TLS fails
 - With n such that a user will accept last certificate at a sufficiently high probability

Authentication Protocol

WPA-Enterprise networks use MSCHAPv2 for user authentication

- Widely deployed
- Integrates well with existing infrastructure
- Believed to be sufficiently safe when performed over a secure channel (TLS)

Putting it together

Implementation

Software-defined Radio:

- Software implementation of radio signal processing
- ► Includes software API and libraries to develop own processing blocks
- ► Third party code
- Relatively inexpensive hardware (e.g. Ettus' USRP family) available
- ► GNURadio SDR uses python, C++ for development: speed, ease
- Easier than building chips, RF and firmware

Disadvantages:

- ▶ Passing signals to host CPU for processing introduces delay
- ▶ 802.11 22MHz channel requires higher sampling rate of USRP2 (\$1,500) and later

Prototype

Component	Cost (USD)
1 Desktop Core 2 Quad 4GB RAM	Ì80.0Ó
2 USRP2 boards	3,000.00
2 RFX2400 boards	550.00
1 802.11b/g/n router	66.00
1 Parabolic grid ant.	47.99
1 Standard TLS certificate+domain	178.47
Total	\$4.422.46

Testing reaction time

Testing reaction time

Range test

Northeastern University

Ran 1,000 client trials per site, at 50m intervals, 19dBi gain antenna.

▶ Jam success: Only Rogue SSID appears at client

User Study

- Experiment room setup with prototype
- ▶ 17 users gave consent to be part of study
 - At least 5 participants had academic networking security background
 - All participants shared CS, Engineering background
- ► Task: connect to WiFi and browse (i.e. web search, captchas, following links)
- Users self-rated familiarity with computers and WiFi networks
- Debriefing after test
- Capture data anonymized and encrypted with AES-256

User Study Results

Northeastern University

All users accepted Rogue Certificate, only one reported seeing a duplicated SSID.

User passwords

- Dictionary search 8-character alphanumeric yielded two user passwords in three hours
- NTHASH in MSCHAPv2 can be broken with 1 DES key search
- Cloud computing services (EC2) provide GPUs and OpenCL access for \$2.10 per hour
- ► Est. 10-day DES search with 1 EC2 large instance would cost little over \$1,000

Conclusions

Lessons:

- ▶ Isolated defense efforts provide some measure of protection
- Flaws don't stay isolated
- Even if UI design is not usually addressed as part of security, it has an effect
- A solid foundation to build protocols

Countermeasures:

- Trust relationship between SSID and RADIUS certificate crucial
- UI considerations: non-printable characters
- Move away from MSCHAPv2, strong-password protocols offer better guarantees
- Adopt secure-pairing techniques to limit vector of attack

Thank you